
ICS 353 Final Notes

Chapter 1 — Basic Concepts in Algorithmic Analysis

searching

linear search

Algorithm 1.1 LINEARSEARCH
Input: An array A[1..n]
Output: j if x = A[j], else 0
j <- 1
while (j < n) and (x != A[j])
	 j <- j + 1
end while
if x = A[j] then return j else return 0

O(n)

binary search

check middle

if key less, check first half

if more, check second half

repeat

Algorithm 1.2 BINARYSEARCH
Input: A[1..n]
Output: j, 0

low <- 1; h <- n; j <- 0
while (low <= high) and (j = )
	 mid <- ⌊(low + high)/2⌋
	 if x = A[mid] then j <- mid
	 else if x < A[mid] then high <- mid - 1
	 else low <- mid + 1
end while
return j

merge

combine two (sorted) arrays

iterate over both arrays

whenever u get the smallest of the two, insert it into the new array

array with smallest’s pointer gets increment
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e.g. increment s when smallest element from array 1 added to new array

if one of the arrays is exhausted (shorter than the other), append the remaining 
elements of the other array into the new array

number of element comparisons

best case

smaller of two arrays

n1

worst case

n - 1 where n1 + n2 = n

Algorithm 1.3 MERGE
Input: A[1..m], pointers p, q, and r
Output: A[p..r] (merged array)

s <- p; t <- q + 1; k <- p
while s <= q and t <= r
	 if A[s] <= A[t] then
	 	 B[k] <- A[s]
	 	 s <- s + 1
	 else
	 	 B[k] <- A[t]
	 	 t <- t + 1
	 end if
	 k <- k + 1
end while
if s = q + 1 then B[k..r] <- A[t..r]
else B[k..r] <- A[s..q]
ed if
A[p..r] <- B[p..r]

sorting

selection sort

find the minimum and store in A[1]

then the next minimum in A[2]

etc.

number of element comparisons

(n-1) + n( - 2) + … + 1 = n(n-1) / 2
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Algorithm 1.4 SELECTIONSORT
Input: A[1..n]
Output: A[1..n] sorted in nondecreasing order
for i <- 1 to n - 1
	 k <- i
	 for j <- i + 1 to n
	 	 if A[j] < A[k] then k <- j
	 end for
	 if k != i then interchange A[i] and A[k]
end for

insertion sort

Algorithm 1.5 INSERTIONSORT
Input: A[1..n]
Output: A[1..n] sorted in nondecreasing order

for i <- 2 to n
	 x <- A[i]
	 j <- i - 1
	 while (j > 0) and (A[j] > x)
	 	 A[j + 1] <- A[j]
	 	 j <- j - 1
	 end while
	 A[j + 1] <- x
end for

number of element comparisons

best case (already sorted)

n - 1

worst case (sorted in decreasing order)

n(n-1) / 2

bottom-up merge sort

divide element into pairs

merge each pair into 2 element sequences

merge further in 4 element sequences

etc.

number of element comparisons

best case

nlogn / 2

worst case

nlogn - n + 1

https://www.craft.do


time complexity

elementary operations

arithmetic

comparison and logical

assignments

O-notation

f(n) is O(g(n)) if there exists a number n0 and constant c > 0 such that

∀𝑛 ≤ 𝑛0, 𝑓(𝑛) ≤ 𝑐𝑔(𝑛)

Ω − 𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛

∀𝑛 ≤ 𝑛0, 𝑓(𝑛) ≥ 𝑐𝑔(𝑛)

Θ − 𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛

∀𝑛 ≥ 𝑛0, 𝑐1𝑔(𝑛) ≤ 𝑓(𝑛)𝑙𝑒𝑐2𝑔(𝑛)

space complexity

linear search, binary search, selection sort, insertion sort

O(1)

merge

O(n)

bottom up sort

O(n)

worst case analysis

select the maximum cost among all possible iputs of size n

average case analysis

proababilities of all inputs of size n

multiply by cost for each

how to solve recurrence relations

expansion

substitution

change of variables

Chapter 4 — Induction
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finding the majority element

set a counter to 1 and let x = A[1]

increase by 1 if element is equal to x

decrease by 1 if not

return x as candidate if counter is more than 1

if counter becomes zero when comparing then call procedure recurisvely on the next 
element

running time

O(n)

integer exponentiation

O(logn)

linear in the input size

if n is even then x^n = (x^m)^2

if odd, x^n = x(x^m)^2

recursive exp

power(x, m):

if m = 0 then y ← 1

y ← power(x, m/2) 

square y

m is odd then y ← xy

return y

iterative exp

to compute x^n

y ← 1

for each bit in the power n

y ← y^2

if the bit is 1 then y ← xy

return y

horner’s algorithm

𝑃𝑛(𝑥) = 𝑥𝑃𝑛−1(𝑥) + 𝑎0

radix sort

sort by most significant digit first

O(kn)

k is the length of the longest digit
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O(n) space

Chapter 5 — Divide and Conquer

binary search

recursive

mergesort

if low < high

get mid

call mergesort from low to mid

call mergesort from mid + 1 to high

merge both results

divide and conquer paradigm

divide

conquer

combine

select

to find kth smallest element

divide A into q groups of 5

discard remaining elements if doesnt divide p

sort each individually and get the median

let the set of medians be M

mm ← select(M, q/2)

parittion A into 3

A1 where a < mm

A2 where a = mm

A3 where a > mm

if |A1| >= k return select(A1, k)

elif |A1| + |A2| >= k return mm

elif |A1| + |A2| < k: return select(A3, k - |A1| - |A2|)

O(n)

e.g. median in O(n)

T(n/5) to find median of medians

T(3n/4) to recursively call select on on A1 or A3
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cn to parittion and sort groups of 5

quicksort

in place sorting

partitioning

split algorithm

sorting algorithm

if low < high

SPLIT(A, w) // w is the new pos of A[low]

quicksort(A, low, w - 1)

quicksort(A, w + 1, high)

complexity

worst case

O(n^2)

average case

O(nlogn)

when median chosen as pivot

O(nlogn)

integer multiplication

naive algorithm

O(n^2)

each integer is 2 parts of n/2 bits each

𝑢𝑣 = (𝑤2𝑛/2 + 𝑥)(𝑦2𝑛/2 + 𝑧)

can be simplified to:

𝑤𝑦2𝑛 + (𝑤𝑧 + 𝑥𝑦)2𝑛/2 + 𝑥𝑧

multiply by 2^n means shifting by n bits

O(n) time

4 multiplications and 3 additions

O(n^2)

still not an improvement over naive algorithm

if you compute wz + xy as (w+x)(y+z) - wy - xz

then its 3 multiplications and 6 additions/substractions

O(n^log3)

matrix multiplication
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o(n^3) time complexity

7 multiplications and 18 additions of n/2*n/2 matrices

strassen’s algorithm

O(n^log7)

more additions

but much less multiplications

Chapter 6 — Dynamic Programming

longest common subsequence

L[i, j] = { 0 if i = 0 or j = 0

L[i - 1, j -1] + 1 if ai = bj

max{L[i, j - 1], L[i - 1, j] ai != bh

O(nm)

O(min{m, n}) space

matrix chain multiplication

do each diagonal

O(n^3)

O(n^2) space

all pairs shortest path

O(n^3)

space O(n^2)

𝑑𝑘
𝑖,𝑗 = {𝑙[𝑖, 𝑗] 𝑖𝑓 𝑘 = 0, 𝑚𝑖𝑛{𝑑𝑘−1

𝑖,𝑗 , 𝑑𝑘−1
𝑖,𝑘 + 𝑑𝑘−1

𝑘,𝑗 }

knapsack

V[i, j] = { 0

V[i - 1, j] if j < si

max{V[i - 1, j], V[i - 1, j - si] + vi} if j >= si

O(nC)

O(C) space
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Parallel Algorithms

parallel computing

architecture where several processors execute or process an application 
simultaneously

parallel algorithm

algorithm that makes use of more than one processor to solve a specific problem

adding n numbers

sequential solution

iterative

O(n)

parallel solution

add pairs

then add sums of pairs

log n times

n/2 processors needed

find the index of a key

sequential solution

go through each element and return the index if matched

O(n)

parallel solution

every element in a processor

processor P1 sets j to 0 O(1)

each processor compares their element to the key O(1)

if found, one processor writes on j O(1)

O(1) total

performance of parallel algorithms

T(n, p)

running time using p processors

C(n, p)

cost of the algorithm

running time * number of processors

pT(n, p)

W(n, p)

total number of operations done by individual processors

S(p)
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speedup

T(n, 1) / T(n, p)

if S(p) = p

speedup is perfect

E(n, p)

efficiency

S(p) / p

T(n, 1) / C(n, p)

parallel architectures

SISD

single instruction stream, single data stream

one cpu

SIMD

single program & multiple CPUs

MISD

MIMD

p processors, p streams of instructions, and p streams of data

most parallel computers

shared-memory computers

RAM

for sequential

PRAM

parallel

has no limit on the number of processors

interconnection-network computers

processor-memory pairs connected in a pattern

G = (V, E)

V is the set of processors

E is the set of two-way links

degree of a network

maximum degree of any vertex in the graph

network diameter

maximum shortest path distance between any two processors

bisection width
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minimum number of links that have to be removed in order to disconnect the 
network into two equal size subnetworks

Shared Memory Computers (PRAM)

read/write conflicts are resolved by

EREW

exclusive read exclusive write

CREW

concurrent read exclusive write

ERCW

CRCW

writes are defined as

COMMON

successful if all processors write the same value

ARBITRARY

only one arbitrary attempt is successful

PRIORITY

processors are ranked

highest rank can write

Array reduction

e.g. SUM, AND, MAX

balanced tree method

to add n numbers

n = 2^k

each leaf node is assigned processor Pi

each input in position b[n] to b[2n - 1]
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each internal node at level j (0 to k - 1) is assigned processor P1 to P_2^j

e.g. level 2 has processors from 1 to 2^2 = 4 (1, 2, 3, 4)

brent theorem

number of procsesors can be reduced without affecting the time complexity

let the number of processors be n / log n

assign log n numbers to each processor

each processor finds the maximum in its group, sequentially, using O(lgn) 
comparisons

the algorithm continues to find the maximum of the n/logn maxima in O(lgn)

therefore the running time is O(lgn) and the cost is O(n)

formally

algorithm requires tp parallel steps using p processors

total number of operations is s

let q = s / tp

there exists an algorithm that performs at most 2tp steps using q processors

if sequential time complexity is O(s), then Aq is optimal

sorting

CRCW

SUM

n^2 processors

if A[i] > A[j] then r[i] ← 1 else 0

running time is O(n)

cost is O(n^2)
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EREW

use n processors to initialize r[1..n]

use n processors to copy array to C

sequentially from i=1 to n - 1

in parallel from j=1 to n

k ← sum of i and j wrapped around

if A[j] > C[k] then increase rank of r[j]

running time is O(n)

cost is O(n^2)

parallel prefix

O(lgn)

cost: O(nlogn)
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array packing

let A be an array of n elements such that t of them are marked

create an array D such that all marked elements appear before all unmarked elements 
(preserving the order)

algorithm:

create an array B assigning 1 to each marked element

apply the parallel prefix algorithm to B and store sums in C

if aj is marked, store it in array D

exchange the bits of array B

apply the parallel prefix algorithm again and store in C

if aj is unmarked, store it in array D in position t + ci
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O(logn)

cost: O(nlogn)

Chapter 9 — NP-complete Problems

class P

consists of decision problems whose yes/no solution can be obtained using a 
deterministic algorithm that runs in polynomial time

class NP

problems for which there exists a deterministic algorithm which can verify the 
correctness of a solution in polynomial time

nondeterministic algorithm

guessing phase

arbitrary string of characters generated

polynomial time

verificiation phase

deterministic algorithm verifies two things

checks whether solution is in the proper format

checks whether it is a solution

answers yes or no

polynomial time
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class of problems for which there exists a nondeterministic algorithm that runs in 
polynomial time

NP-complete problems

subclass of decision problems in NP that are hardest in the sense that if one is proved 
to be solvable in polynomial time deterministic then all problems in NP are solvable by a 
polynomial time deterministic algorithm (i.e. NP = P)

pi reduces to pi’ in polynomial time

there exists a deterministic algorithm that transforms an instance I of problem pi to 
an instance I’ of problem pi’ in polynomial time

NP-hard

for every problem pi’ in NP, pi’ reduces to pi

NP + NP-hard = NP-complete

proving np completeness

prove pi is in NP

prove that there is a NP complete problem pi’ that reduces to pi

i.e. prove its NP hard

hamiltonian cycle reduces in polynomial time to traveling salesman

make each edge that exists in the cycle have weight 1

each edge that doesnt have weight n

let k = n

G has a hamiltonian cycle if and only if G’ has a tour of length exactly n

satisfiability reduces to clique

construct a graph G where the vertices are all the occurrences of the 2n literals (literal 
and its negation)

make an edge if xi and xj are in different clauses and they are not negations of each 
other
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satisfiability reduces to vertex cover

for each variable make a pair of vertices connecting xi and xi’

for each clause, G contains a clique Cj of size nj

for each vertex in Cj, there is an edge connecting w to its corresponding literal in the 
vertex pairs (xi, xi’)

k = n + sum from j=1 to m for (nj - 1)

vertex cover reduces to independent set

Let G be a connected undirected graph

S is an independent set if and only if V - S is a vertex cover in G
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vertex cover, independent set, and clique are NP complete

Basic Computability

turing machine

infinite length tape

inptu is provided as a finite sequence of symbols

head reads the input tape

optionally replaces the symbol with another

changes its internal state

moves one cell right or left

starts at state s

standard Turing machine

six-tuple M = (Γ, Β, Q, δ, s, h)

Γ: tape alphabet without B

Β: blank symbol

Q: set of states

δ: next-state function

δ: (Q x (Γ ∪ {Β})) → (Q ∪ {h}) x (Γ ∪ B) x {L, R}

{L, R} is left right

s: initial state

h: accepting halt state

not a member of Q

TM cannot exit from h

TM M accepts an input string w ∈ Γ*

if when started in state s with w left-adjusted on its blank tape, the last state entered is 
h

TM M accepts the language L(M) consisting of all strings accepted by M

if a TM M halts on all inputs, M recognizes the language that it accepts

Language L is decidable or recursive

languages accepted by M are called recursively enumerable

three possibilities on given input w:

TM M eventually enters h (accepting)

w ∈ L(M)
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TM M eventually enters h (rejecting) or crashes

w ∉ L(M)

M never halts

w ∉ L(M)

recognizer

TM recognizes L(M)

decider

TM recognizes L(M) and never enters an infinite loop

decidable vs recognizable

decidable language is always a recognizable language

recognizable language:

language for which there is at least one machine that has it as its language

decidable language:

if there is a machine that recognizes L and that whatever the input you give it, will 
always either accept / reject, the language is considered decidable.

a language L ⊆ Γ*

is in P if there is a TM M with tape alphabet Γ and a polynomial p(n) such that for every 
w ∈ Γ*, M halts in p(|w|) steps and accepts w if it is in L and rejects it otherwise

nondeterministic Turing machine

seven-tuple M = (Ʃ, Γ, Β, Q, δ, s, h)

Ʃ: choice input alphabet

δ: next-state function

δ: Q x Ʃ x (Γ ∪ {Β}) → (Q ∪ {h}) x (Γ ∪ B) x {L, R} ∪ ⊥

if δ(q,c,a) = ⊥, then there is no sucessor to the current state

If δ(q,c,a) = (q’, a’, C)

M’s control unit enters state q’, writes a’ in the cell under the head, and 
moves the head left or right depending on C

accepts the input string if there is some choice input string such that the last state 
entered by M is h

language is in NP if there is a nondeterministic Turing machine M and polynomial (pn) 
such that M accepts L and for each w in L, there is a choice input c such that M halts in 
p(|w|) steps

k-tape turing machine

for each k-tape TM,

there is a one tape TM such that the k-tape TM can be simulated in O(T^2) steps

if a nondeterministic TM has more than two nondeterministic choices for a particular state 
and letter
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we can design another NDTM that has at most two choices

any language accepted by a NDTM can be accepted by a TM

any language accepted by a nondeterministic multi-tape TM can be accepted by a 
deterministic TM

universal Turing machine

turning machine that can simulate the behavior of an arbitrary Turing machine

computer

MUniversal

inputs (M, I)

M: turing machine description

I: the input to the machine M

results:

L(MUniversal) = {(M, I) | M accepts I}

language that is recursively enumarable

a language where a TM that accepts it exists

unsolvable language

no TM exists that accepts the language

consider L = {w | w not accepted by M}

L is not recursively enumerable

the complement of L1 is a recursively enumerable language that is not decidable

complement of a decidable language is decidable

ignore this vvvvvv

Chapter 10 — Introduction to Computation Complexity

alphabet 

Σ

finite set of symbols

language
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subset of the set of all finite length strings of symbols chosen from Ʃ

Ʃ*

standard Turing machine

one worktape

divided into separate cells

ability to read and rewrite the symbol contained in the cell of teh worktape currently 
scanned

k-Tape Turing machine

k worktapes and k worktape heads

M = (S, Ʃ, Γ, δ, p0, pf)

S is the finite set of states

Γ is the finite set of tape symbols which include the symbol B (blank symbol)

Ʃ ⊆ Γ - {B}, the set of input symbols

δ is the transition function

function that maps elements of S * Γ^k into finite subsets of S x ((Γ - {B}) * {L, P, 
R})^k

p0 is the initial state

pf is the final or accepting state

deterministic if for every p ∈ S

Chapter 12 — Backtracking

for some problems there does not exist an algorithm other than exhaustive search

need arises for developing techniques of searching

cut down the search space

backtracking

suitable for solving problems where a large but finite number of solutions have to be 
inspected
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